Info III Tutorium

Thomas Pajor

ITI Sanders

21. November 2006

Punkteverteilung

Übungsblatt 3

- ► Aufgabe 1 6P
- ► Aufgabe 2 5P
- \Rightarrow 11 Punkte insgesamt

Beweistechniken

Ziel

Gegeben seien zwei Aussagen A und B. Wir möchten zeigen:

$$A \Rightarrow B$$

"Wenn A gilt, dann auch B."

Beweistechniken

Ziel

Gegeben seien zwei Aussagen A und B. Wir möchten zeigen:

$$A \Rightarrow B$$

"Wenn A gilt, dann auch B."

Verfahren

- Direkter Beweis
- Widerspruchsbeweis
- ▶ Beweis durch Kontraposition

Verfahren

Dies ist das wohl einfachste Verfahren:

▶ Nimm A als wahr an

Verfahren

Dies ist das wohl einfachste Verfahren:

- ▶ Nimm A als wahr an
- Benutze Sätze oder Konstruktion um eine Kette von Implikationen aufzubauen

$$A \Rightarrow P_1 \Rightarrow \ldots \Rightarrow P_k \Rightarrow B$$

<u>Ve</u>rfahren

Dies ist das wohl einfachste Verfahren:

- ▶ Nimm A als wahr an
- Benutze Sätze oder Konstruktion um eine Kette von Implikationen aufzubauen

$$A \Rightarrow P_1 \Rightarrow \ldots \Rightarrow P_k \Rightarrow B$$

▶ Aus der Transitivität von " \Rightarrow " folgt $A \Rightarrow B$

Verfahren

Dies ist das wohl einfachste Verfahren:

- ▶ Nimm A als wahr an
- Benutze Sätze oder Konstruktion um eine Kette von Implikationen aufzubauen

$$A \Rightarrow P_1 \Rightarrow \ldots \Rightarrow P_k \Rightarrow B$$

- ▶ Aus der Transitivität von " \Rightarrow " folgt $A \Rightarrow B$
- ▶ B ist unter Annahme von A wahr

Widerspruchsbeweis

Verfahren

Zeige statt $A \Rightarrow B$ dass $\neg(A \Rightarrow B)$ nicht gilt.

▶ Umformen ergibt

$$\neg(A \Rightarrow B) \Leftrightarrow \neg(\neg A \lor B)$$
$$\Leftrightarrow A \land \neg B$$

Widerspruchsbeweis

Verfahren

Zeige statt $A \Rightarrow B$ dass $\neg(A \Rightarrow B)$ nicht gilt.

▶ Umformen ergibt

$$\neg(A \Rightarrow B) \Leftrightarrow \neg(\neg A \lor B)$$
$$\Leftrightarrow A \land \neg B$$

Negiere B und zeige, dass $\neg B$ zusammen mit A zu einem Widerspruch führt

Widerspruchsbeweis

Verfahren

Zeige statt $A \Rightarrow B$ dass $\neg(A \Rightarrow B)$ nicht gilt.

▶ Umformen ergibt

$$\neg(A \Rightarrow B) \Leftrightarrow \neg(\neg A \lor B)$$
$$\Leftrightarrow A \land \neg B$$

- Negiere B und zeige, dass $\neg B$ zusammen mit A zu einem Widerspruch führt
- ▶ Also ist $A \land \neg B$ falsch was $A \Rightarrow B$ ist wahr entspricht

Beweis durch Kontraposition

Verfahren

Statt $A \Rightarrow B$ zeige die duale Aussage $\neg B \Rightarrow \neg A$.

▶ Umformen liefert

$$A \Rightarrow B \Leftrightarrow \neg A \lor B$$
$$\Leftrightarrow \neg A \lor \neg \neg B$$
$$\Leftrightarrow \neg \neg B \lor \neg A$$
$$\Leftrightarrow \neg B \Rightarrow \neg A$$

▶ Zeige also $\neg B \Rightarrow \neg A$ durch eine Kette von Implikationen (\rightsquigarrow Direkter Beweis)

Aufgabe

Aufgabe 1

Sei $\Sigma:=\{0,1\}$. Zeigen Sie unter Verwendung des Pumping Lemma, dass die Sprache der Palindrome gerader Länge, also

$$L := \{ww^R \mid w \in \Sigma^*\}$$

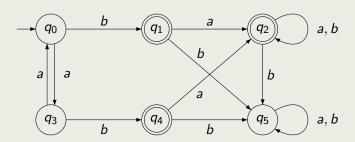
nicht regulär ist.

Aufgabe

Aufgabe 2

Zu $\Sigma := \{0\}$ sei die Sprache

$$L := \{0^{k^2} \mid k \in \mathbb{N}\}$$


also die Sprache aller Wörter mit quadratischer Länge, definiert. Zeigen Sie mit Hilfe des Pumping Lemma, dass L nicht regulär ist.

Ist die Sprache $L_N := \{0^{k^2} \mid k \leq N\}$ regulär?

Aufgabe

Aufgabe 3

Gegeben sei folgender DEA $\mathcal{A} := (Q, \{a, b\}, \delta, s, F)$

Bestimmen Sie einen äquivalenten, minimalen DEA.