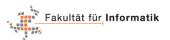
Info III Tutorium aka LA III Tut ;-)

Thomas Pajor



ITI Sanders

31. Oktober 2006

Wer bin ich?

▶ Name: Thomas Pajor

► E-Mail: thomas.pajor@logn.de

► Tut-Webseite: www.logn.de/tut/

Wer bin ich?

▶ Name: Thomas Pajor

► E-Mail: thomas.pajor@logn.de

► Tut-Webseite: www.logn.de/tut/

▶ Newsgroup: uka.info3 auf news.rz.uni-karlsruhe.de

Wer bin ich?

- Name: Thomas Pajor
- ► E-Mail: thomas.pajor@logn.de
- ► Tut-Webseite: www.logn.de/tut/
- ▶ Newsgroup: uka.info3 auf news.rz.uni-karlsruhe.de

Zum Übungsbetrieb

▶ Abgabe der Blätter ist Freitags 09:45 Uhr im Keller des Infobaus

Wer bin ich?

- ▶ Name: Thomas Pajor
- ► E-Mail: thomas.pajor@logn.de
- ► Tut-Webseite: www.logn.de/tut/
- ▶ Newsgroup: uka.info3 auf news.rz.uni-karlsruhe.de

Zum Übungsbetrieb

- ▶ Abgabe der Blätter ist Freitags 09:45 Uhr im Keller des Infobaus
- Abgabe zu zweit ist erlaubt und gewünscht!

Wer bin ich?

- ► Name: Thomas Pajor
- ► E-Mail: thomas.pajor@logn.de
- ► Tut-Webseite: www.logn.de/tut/
- Newsgroup: uka.info3 auf news.rz.uni-karlsruhe.de

Zum Übungsbetrieb

- ▶ Abgabe der Blätter ist Freitags 09:45 Uhr im Keller des Infobaus
- Abgabe zu zweit ist erlaubt und gewünscht!
- ► Es wird vermutlich keinen Klausurbonus geben

Aufgabe

Seien $\Sigma := \{a, b, c, d\}$ und $L_1 := \{ab, b, abc, da\}$, $L_2 := \{b, dc, a\}$ Sprachen über Σ .

Bestimmen Sie $L_1 \cdot L_2$, $L_1 \setminus L_2$ und $((L_1 \cup L_2 \cup \{c,d\}^+)^*)^c$.

Aufgabe

Seien A, B zwei Sprachen über einem Alphabet Σ . Beweisen oder widerlegen Sie:

- (a) $(A \cap B)^* = A^* \cap B^*$
- (b) $(A \cup B)^* = A^* \cup B^*$

Gelten die beiden Aussagen für die Spezialfälle $A, B \subseteq \Sigma$ und $A \subseteq B$?

Definition

Sind R und S zwei Relationen über M, so ist das Produkt $R \star S$ der Relationen definiert durch

$$R \star S := \{(x, y) \mid \exists z \in M : (x, z) \in R \text{ und } (z, y) \in S\}$$

Definition

Sind R und S zwei Relationen über M, so ist das Produkt $R \star S$ der Relationen definiert durch

$$R \star S := \{(x, y) \mid \exists z \in M : (x, z) \in R \text{ und } (z, y) \in S\}$$

Aufgabe

Zeigen Sie:

- (a) \star ist assoziativ: $(R \star S) \star T = R \star (S \star T)$
- (b) \emptyset ist "Nullelement": $\emptyset \star S = \emptyset = S \star \emptyset$
- (c) Die Gleichheitsrelation G ist "Einselement": $G \star S = S = S \star G$